(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: CountUpRound
public class CountUpRound{
public static int round (int x) {

if (x % 2 == 0) return x;
else return x+1;
}


public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();



while (x > y) {

y = round(y+1);

}


}

}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
CountUpRound.main([Ljava/lang/String;)V: Graph of 170 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 25 rules for P and 2 rules for R.


Combined rules. Obtained 2 rules for P and 0 rules for R.


Filtered ground terms:


551_0_main_Load(x1, x2, x3, x4) → 551_0_main_Load(x2, x3, x4)
Cond_551_0_main_Load1(x1, x2, x3, x4, x5) → Cond_551_0_main_Load1(x1, x3, x4, x5)
Cond_551_0_main_Load(x1, x2, x3, x4, x5) → Cond_551_0_main_Load(x1, x3, x4, x5)

Filtered duplicate args:


551_0_main_Load(x1, x2, x3) → 551_0_main_Load(x2, x3)
Cond_551_0_main_Load1(x1, x2, x3, x4) → Cond_551_0_main_Load1(x1, x3, x4)
Cond_551_0_main_Load(x1, x2, x3, x4) → Cond_551_0_main_Load(x1, x3, x4)

Combined rules. Obtained 2 rules for P and 0 rules for R.


Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 551_0_MAIN_LOAD(x1[0], x0[0]) → COND_551_0_MAIN_LOAD(x1[0] >= 0 && x1[0] < x0[0] && 0 < x1[0] + 1 && !(x1[0] + 1 % 2 = 0), x1[0], x0[0])
(1): COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 551_0_MAIN_LOAD(x1[1] + 1 + 1, x0[1])
(2): 551_0_MAIN_LOAD(x1[2], x0[2]) → COND_551_0_MAIN_LOAD1(x1[2] >= 0 && x1[2] < x0[2] && 0 = x1[2] + 1 % 2, x1[2], x0[2])
(3): COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 551_0_MAIN_LOAD(x1[3] + 1, x0[3])

(0) -> (1), if ((x1[0] >= 0 && x1[0] < x0[0] && 0 < x1[0] + 1 && !(x1[0] + 1 % 2 = 0) →* TRUE)∧(x1[0]* x1[1])∧(x0[0]* x0[1]))


(1) -> (0), if ((x1[1] + 1 + 1* x1[0])∧(x0[1]* x0[0]))


(1) -> (2), if ((x1[1] + 1 + 1* x1[2])∧(x0[1]* x0[2]))


(2) -> (3), if ((x1[2] >= 0 && x1[2] < x0[2] && 0 = x1[2] + 1 % 2* TRUE)∧(x1[2]* x1[3])∧(x0[2]* x0[3]))


(3) -> (0), if ((x1[3] + 1* x1[0])∧(x0[3]* x0[0]))


(3) -> (2), if ((x1[3] + 1* x1[2])∧(x0[3]* x0[2]))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 551_0_MAIN_LOAD(x1, x0) → COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1, 0), <(x1, x0)), <(0, +(x1, 1))), !(=(%(+(x1, 1), 2), 0))), x1, x0) the following chains were created:
  • We consider the chain 551_0_MAIN_LOAD(x1[0], x0[0]) → COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0]), COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1]) which results in the following constraint:

    (1)    (&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0)))=TRUEx1[0]=x1[1]x0[0]=x0[1]551_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧551_0_MAIN_LOAD(x1[0], x0[0])≥COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])∧(UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (2)    (<(0, +(x1[0], 1))=TRUE>=(x1[0], 0)=TRUE<(x1[0], x0[0])=TRUE<(%(+(x1[0], 1), 2), 0)=TRUE551_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧551_0_MAIN_LOAD(x1[0], x0[0])≥COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])∧(UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥))


    (3)    (<(0, +(x1[0], 1))=TRUE>=(x1[0], 0)=TRUE<(x1[0], x0[0])=TRUE>(%(+(x1[0], 1), 2), 0)=TRUE551_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧551_0_MAIN_LOAD(x1[0], x0[0])≥COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])∧(UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (4)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (5)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (7)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (8)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (7) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (9)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (10)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (9) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (12)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (13)    (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)







For Pair COND_551_0_MAIN_LOAD(TRUE, x1, x0) → 551_0_MAIN_LOAD(+(+(x1, 1), 1), x0) the following chains were created:
  • We consider the chain COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1]) which results in the following constraint:

    (14)    (COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])∧(UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥))



    We simplified constraint (14) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (15)    ((UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥)∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (15) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (16)    ((UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥)∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (16) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (17)    ((UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥)∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (17) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (18)    ((UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)







For Pair 551_0_MAIN_LOAD(x1, x0) → COND_551_0_MAIN_LOAD1(&&(&&(>=(x1, 0), <(x1, x0)), =(0, %(+(x1, 1), 2))), x1, x0) the following chains were created:
  • We consider the chain 551_0_MAIN_LOAD(x1[2], x0[2]) → COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2]), COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 551_0_MAIN_LOAD(+(x1[3], 1), x0[3]) which results in the following constraint:

    (19)    (&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2)))=TRUEx1[2]=x1[3]x0[2]=x0[3]551_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧551_0_MAIN_LOAD(x1[2], x0[2])≥COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])∧(UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥))



    We simplified constraint (19) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (20)    (>=(x1[2], 0)=TRUE<(x1[2], x0[2])=TRUE>=(0, %(+(x1[2], 1), 2))=TRUE<=(0, %(+(x1[2], 1), 2))=TRUE551_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧551_0_MAIN_LOAD(x1[2], x0[2])≥COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])∧(UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥))



    We simplified constraint (20) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (21)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] + [(-1)bni_17]x1[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (21) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (22)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] + [(-1)bni_17]x1[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (22) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] + [(-1)bni_17]x1[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (23) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (24)    (x1[2] ≥ 0∧x0[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (24) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (25)    (x1[2] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] ≥ 0∧[(-1)bso_18] ≥ 0)







For Pair COND_551_0_MAIN_LOAD1(TRUE, x1, x0) → 551_0_MAIN_LOAD(+(x1, 1), x0) the following chains were created:
  • We consider the chain COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 551_0_MAIN_LOAD(+(x1[3], 1), x0[3]) which results in the following constraint:

    (26)    (COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥NonInfC∧COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥551_0_MAIN_LOAD(+(x1[3], 1), x0[3])∧(UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥))



    We simplified constraint (26) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (27)    ((UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (27) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (28)    ((UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (28) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (29)    ((UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (29) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (30)    ((UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 551_0_MAIN_LOAD(x1, x0) → COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1, 0), <(x1, x0)), <(0, +(x1, 1))), !(=(%(+(x1, 1), 2), 0))), x1, x0)
    • (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
    • (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)

  • COND_551_0_MAIN_LOAD(TRUE, x1, x0) → 551_0_MAIN_LOAD(+(+(x1, 1), 1), x0)
    • ((UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)

  • 551_0_MAIN_LOAD(x1, x0) → COND_551_0_MAIN_LOAD1(&&(&&(>=(x1, 0), <(x1, x0)), =(0, %(+(x1, 1), 2))), x1, x0)
    • (x1[2] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] ≥ 0∧[(-1)bso_18] ≥ 0)

  • COND_551_0_MAIN_LOAD1(TRUE, x1, x0) → 551_0_MAIN_LOAD(+(x1, 1), x0)
    • ((UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(551_0_MAIN_LOAD(x1, x2)) = [2] + x2 + [-1]x1   
POL(COND_551_0_MAIN_LOAD(x1, x2, x3)) = [1] + x3 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(!(x1)) = [-1]   
POL(=(x1, x2)) = [-1]   
POL(2) = [2]   
POL(COND_551_0_MAIN_LOAD1(x1, x2, x3)) = [2] + x3 + [-1]x2   

Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)

POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}   
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}   

The following pairs are in P>:

551_0_MAIN_LOAD(x1[0], x0[0]) → COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])
COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])
COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 551_0_MAIN_LOAD(+(x1[3], 1), x0[3])

The following pairs are in Pbound:

551_0_MAIN_LOAD(x1[0], x0[0]) → COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])
551_0_MAIN_LOAD(x1[2], x0[2]) → COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])

The following pairs are in P:

551_0_MAIN_LOAD(x1[2], x0[2]) → COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])

There are no usable rules.

(6) Complex Obligation (AND)

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 551_0_MAIN_LOAD(x1[2], x0[2]) → COND_551_0_MAIN_LOAD1(x1[2] >= 0 && x1[2] < x0[2] && 0 = x1[2] + 1 % 2, x1[2], x0[2])


The set Q is empty.

(8) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(9) TRUE

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 551_0_MAIN_LOAD(x1[1] + 1 + 1, x0[1])
(3): COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 551_0_MAIN_LOAD(x1[3] + 1, x0[3])


The set Q is empty.

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(12) TRUE